About
김태근 (Axect)을 소개합니다.
저는
수학, 물리학 그리고 프로그래밍을 좋아하는 연구자입니다.
경력
- Joint Postdoc: Institute of Modern Physics, Fudan University & RIKEN iTHEMS (2025.10 ~ )
학력
- Ph.D.: 연세대학교 대학원 물리학과 (2017.03 ~ 2025.08)
- B.S.: 연세대학교 천문우주학과 (2012.03 ~ 2017.02)
연구 관심사
제 연구는 암흑물질 현상론과 AI4Science를 연결하여, 원시 블랙홀, 액시온 유사 입자를 탐구하고 물리학을 위한 연산자 학습 프레임워크를 개발합니다. 자세한 연구 비전과 출판물은 Research 페이지를 참고해주세요.
학문 및 기술
수학
- 함수해석학
- 수치해석학
- 유한차분법
- 유한요소법
- 미분기하학
- 위상수학
물리학
- 천체입자물리학
- 일반상대성이론
- 양자장이론
- 수리물리학
기계학습
- 통계적 기계학습
- 선형회귀 (LASSO, Ridge)
- 로지스틱 회귀
- 선형분류
- Kernel Based Methods
- Kernel Smoothing
- Kernel Density Estimation
- 인공신경망
- MLP, CNN, RNN (LSTM, GRU), Transformer, Mamba
- Operator learning & Nerual ODE
- Bayesian Neural Network
프로그래밍
- 주 언어
- Rust, Julia, Python
- 보조 언어
- C/C++, Haskell
- 프레임워크 및 라이브러리
- 수치 계산
- peroxide, BLAS, LAPACK, numpy, scipy
- 시각화
- matplotlib, vegas, ggplot2, plotly
- 웹
- Django, Vue, Firebase, Surge, Hugo, Zola
- 머신러닝
- PyTorch, JAX, Optax, Equinox, Wandb, Optuna, Candle, Tensorflow, Norse
- 수치 계산
오픈소스 프로젝트
오픈소스 프로젝트의 전체 목록은 Software 페이지를 참고해주세요.
주요 프로젝트:
- Peroxide - 선형대수, ODE 솔버, 최적화 도구를 제공하는 종합 과학계산 Rust 라이브러리 (1M+ 다운로드, 500+ stars)
- DeeLeMa - 암흑물질 질량 추정을 위한 PyTorch 기반 프레임워크, Physical Review Research 게재 (2023)
- Neural Hamilton - 데이터로부터 해밀토니안 역학을 재구성하는 연산자 학습 및 Neural ODE 현재 연구, 전통적인 RK4 솔버와 벤치마킹 (arXiv 2024)
학술활동
논문
-
Taehyeun Kim, Tae-Geun Kim , Anouk Girard and Ilya Kolmanovsky, Learning Hamiltonian Dynamics with Bayesian Data Assimilation, arXiv:2501.18808 (2025)
-
Tae-Geun Kim and Seong Chan Park, Neural Hamilton: Can A.I. Understand Hamiltonian Mechanics?, arXiv:2410.20951 (2024)
-
Tae-Geun Kim , HyperbolicLR: Epoch insensitive learning rate scheduler, arXiv:2407.15200 (2024)
-
Chang Min Hyun, Tae-Geun Kim , and Kyounghun Lee, Unsupervised sequence-to-sequence learning for automatic signal quality assessment in multi-channel electrical impedance-based hemodynamic monitoring, CMPB 108079, arXiv:2305.09368 (2023)
-
Kayoung Ban, Dong Woo Kang, Tae-Geun Kim , Seong Chan Park and Yeji Park, DeeLeMa : Missing information search with Deep Learning for Mass estimation, Phys. Rev. Research 5, 043186, arXiv:2212.12836 (2022)
-
Yongsoo Jho, Tae-Geun Kim , Jong-Chul Park, Seong Chan Park and Yeji Park, Axions from Primordial Black Holes, PTEP ptag011, arXiv:2212.11977 (2022)
발표
-
Accelerating PBH Phenomenology via Neural Operators, The 2nd AI+HEP in East Asia @ KEK (2026) [Oral]
-
From Primordial Black Holes to Nuclei: Solving Inverse Problems in Physics with Operator Learning, Nuclear Lunch Seminar @ Fudan University (2025) [Oral, Invited]
-
Can AI Understand Hamiltonian Mechanics?, Summer Institute 2025 (2025) [Oral]
-
A Neural Operator for Primordial Black Hole Physics, The 4th workshop on Symmetry and Structure of the Universe (2025) [Oral]
-
PBH Phenomenology with Operator Learning, LSSU Seminar @ JBNU (2025) [Oral, Invited]
-
AI with Hamiltonian Mechanics: From Predictions to Understanding, AI+HEP in East Asia (2025) [Oral]
-
Can A.I. Understand Hamiltonian Mechanics?, RIKEN DEEP-IN Seminar (2025) [Oral, Invited]
-
Can A.I. Understand Hamiltonian Mechanics?, Dark Matter as a portal to New Physics 2025 (2025) [Oral, Invited]
-
Can A.I. Understand Hamiltonian Mechanics?, Focused workshop on AI in High Energy Physics (2025) [Oral]
-
Can A.I. Understand Hamiltonian Mechanics?, 2024 Korea-France STAR Workshop [Oral]
-
Can A.I. Understand Hamiltonian Mechanics?, Invited Seminar @ KIAS (2024) [Oral, Invited]
-
Can A.I. Understand Hamiltonian Mechanics?, 21st Saga-Yonsei Joint Workshop (2024) [Oral]
-
Primordial Black Hole dominant Axion background, 2024 KPS Fall Meeting (2024) [Oral]
-
Exploration of Primordial Black Holes and Axion-Like Particles through a novel decay model on cosmological scale, 27th International Summer Institute on Phenomenology of Elementary Particle Physics and Cosmology (2023) [Poster]
-
Exploration of Primordial Black Holes and Axion-Like Particles through a novel decay model on cosmological scale, 16th International Conference on Interconnections between Particle Physics and Cosmology (2022) [Oral]
-
Constraining ALPs via PBH with time-varying decay process, Workshop on Physics of Dark Cosmos: dark matter, dark energy, and all (2022) [Oral]
-
Constraining ALPs via PBH with time-varying decay process Part.2, 2022년 한국물리학회 창립 70주년 가을 학술논문발표회 (2022) [Oral] [Best Oral Award]
-
Bird’s eye view of Neutron star cooling, 16th Saga-Yonsei Joint Workshop (2019) [Oral]
읽은 책들
수학
- 선형대수학
- Mark S, Gockenbach, Finite-Dimensional Linear Algebra. 1st ed., CRC Press (2010)
- 해석학
- Walter Rudin, Principles of Mathematical Analysis. 3rd ed., McGraw Hill (1976)
- Elias M. Stein, Rami Shakarchi, Fourier Analysis: An Introduction. Illustrated ed., Princeton University Press (2003)
- Elias M. Stein, Rami Shakarchi, Real Analysis: Measure Theory, Integration, and Hilbert Spaces. 1st ed., Princeton University Press (2005)
- 미분기하학
- William M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry. Revised 2nd ed., Academic Press (2002)
- Barrett O’Neill, Elementary Differential Geometry. Revised 2nd ed., Academic Press (2006)
- 위상수학
- James R. Munkres, Topology. 2nd ed., Pearson College Div (2000)
- Werner Ballmann, Introduction to Geometry and Topology. 1st ed., Birkhäuser (2018)
물리학
- 고전역학
- L. D. Landau, E. M. Lifshitz, Mechanics: Volume 1. 3rd ed., Butterworth-Heinemann (1976)
- Herbert Goldstein, Classical Mechanics. 3rd ed., Pearson (2001)
- 양자역학
- Ashok Das, Lectures on Quantum Mechanics. 2nd ed., World Scientific Publishing Company (2012)
- J. J. Sakurai, Jim J. Napolitano, Modern Quantum Mechanics. 2nd ed., Pearson (2010)
- 일반상대성이론
- Harvey Reall, Part 3 General Relativity, University of Cambridge 65 (2013)
- M. P. Hobson et al., General Relativity: An Introduction for Physicists. Illustrated ed., Cambridge University Press (2006)
- F. de Felice, C. J. S. Clarke, Relativity on Curved Manifolds, Cambridge University Press (1992)
- 양자장이론
- Lewis H. Ryder, Quantum Field Theory. 2nd ed., Cambridge University Press (1996)
- Michael E. Peskin, Daniel V. Schroeder, An Introduction to Quantum Field Theory, Student Economy Edition. 1st ed., Westview Press (2015)
- Michele Maggiore, A Modern Introduction to Quantum Field Theory, Oxford University Press (2005)
- Ashok Das, Field Theory: A Path Integral Approach. 3rd ed., World Scientific (2006)
기계학습
- 통계적 기계학습
- Masashi Sugiyama, Introduction to Statistical Machine Learning. 1st ed., Morgan Kaufmann (2015)
- Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer (2006)
- Gareth James et al., An Introduction to Statistical Learning: with Applications in R. 1st ed., Springer (2013)
- Trevor Hastie et al., The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed., Springer (2016)
- Yaser S. Abu-Mostafa et al., Learning from Data, AMLBook (2012)
- 심층학습
- Zhang et al., Dive into Deep Learning. 1.0.0-alpha0. (2022)
- Eli Stevens et al., Deep Learning with PyTorch, Manning (2020)
- 오가와 유타로, 만들면서 배우는 파이토치 딥러닝: 12가지 모델로 알아보는 딥러닝 응용법, 한빛미디어 (2021)
- 강화학습
- Laura Graesser and Wah Loon Keng, Foundations of Deep Reinforcement Learning: Theory and Practice in Python. 1st ed., Addison-Wesley Professional (2020)
- Csaba Szepesvári, Algorithms for Reinforcement Learning. 1st ed., Morgan & Claypool Publishers (2009)
기타
- 알고리즘
- Tim Roughgarden, Algorithms Illuminated: Part1: The Basics. Illustrated ed., Soundlikeyourself Publishing (2017)
- Rust
- Steve Klabnik, Carol Nichols, The Rust Programming Language. 1st ed., No Starch Press (2018)
- Jim Blandy, Jason Orendorff, Programming Rust: Fast, Safe, Systems Development. 1st ed., O’Reilly Media (2018)
- Tim McNamara, Rust in Action, Manning (2021)