layout: true
Constraining ALPs via PBH
--- class: center, middle # Constraining ALPs via PBH
with time-varying decay process
Tae-Geun Kim
Yonsei University
with Yongsoo Jho, Jongchul Park, Seongchan Park, Yeji Park
arXiv: 2211.XXXXX
--- ### Primordial Black Hole * Produced cosmologically (e.g. during inflation) * The one of viable candidates for dark matter * It can be evaporated through Hawking radiation * **Hawking temperature of PBH** $$\small k\_BT\_{\text{PBH}} = \dfrac{\hbar c^3}{8\pi G M\_{\text{PBH}}} \sim 10.6 \left(\dfrac{10^{15} \mathrm{g}}{M\_\text{PBH}}\right) \mathrm{MeV} \sim 10^{11}\;\mathrm{K}$$ * **Emission rates of $i$ particle** - This can be computed by `BlackHawk`
[Alexandre Arbey, Jรฉrรฉmy Auffinger, Eur. Phys. J. C 81 10, 910 (2010)]
$$\small \dfrac{d^2 N\_{i}}{dEdt} = \dfrac{g\_i}{2\pi} \dfrac{\Gamma(T, M\_{\text{PBH}})}{e^{(E+m\_i)/k\_BT\_{\text{PBH}}} + 1}$$ * **The lifetime of PBH**
[Don N. Page, Phys. Rev. D 13, 198 (1976)]
$$\small \tau\_{\text{PBH}} \sim 13.8 \times 10^9 \mathrm{yr} \left( \dfrac{M\_\text{PBH}}{5\times 10^{14} \mathrm{g}} \right)^3$$ --- class: split-50 ### Photons from PBH .left-column[ .center[
Fig.1
Photon from PBH
] ] .right-column[ .center[ **Our assumptions on PBH** ] * Monochromatic mass distribution * Schwarzschild PBH * Isotropically distributed ]
.center[ **Differential photon flux** from Extragalaxy
[B. J. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, Phys. Rev. D 81, 104019 (2010)]
] $$ \frac{\text{d}F\_{\gamma\_0}}{\text{d}E\_{\gamma\_0}} = n\_{\text{PBH}}(t\_0) \int\_{t\_{\text{CMB}}}^{\text{min}(\tau\_{\text{PBH}}, t\_0)} \text{d}t \; (1+z(t))\; \frac{\text{d}^2N\_\gamma}{\text{d}E\text{d}t}\bigg|\_{E = (1+z(t))E\_{\gamma\_0}} $$ $$ \small n\_\text{PBH}(t\_0) = \frac{f\_{\text{PBH}} \rho\_\text{DM}}{M\_\text{PBH}},\, \rho\_{\text{DM}} = 2.35 \times 10^{-30} \mathrm{g} \; \mathrm{cm}^{-3},\, f\_{\text{PBH}} = \Omega\_{\text{PBH}}/ \Omega\_{\text{DM}} $$ --- ### Flux of photons from PBH .center[
Fig.2
Redshifted differential flux of (primary + secondary) photon
] --- class: split-50 ### Axion-Like Particles (ALPs) * ALPs : Pseudo NG bosons of the spontaneously broken global $\small U(1)$ symmetry * ALPs studies in cosmology : inflation, dark matter, relaxion and etc.
๐น [Katherine Freese, Joshua A. Frieman, and Angela V. Olinto-Phys. Rev. Lett. 65, 3233 (1990)]
๐น [P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J. Redondo, and A. Ringwald-JCAP06013 (2012)]
๐น [P. W. Graham, D. E. Kaplan, and S. Rajendran-Phys. Rev. Lett. 115 no. 22, 221801 (2015)]
* Astrophysical sources of ALPs : SN, Sun, NS, **PBH**, and etc. .left-column[ .center[
Fig.
] ] .right-column[ .center[ **Properties** ] * Decays to 2 photons * Its mass and the coupling to photons are *independent* in general ] --- class: split-50 ### Motivation for time-varying decay .middle-column[ $$ \small \text{ALP's mean lifetime : } \gamma\tau\_a = \frac{64\pi E\_a}{g\_a^2 m\_a^4} \equiv \frac{\gamma}{\Gamma_a} $$ ] .left-column[ .center[
Fig.3
Mean lifetime of ALPs in the rest frame
] ] .right-column[ .center[
Fig.4
Mean lifetime of ALPs from CMB (Boosted + Redshifted)
] ] .middle-column[ $$ \small \therefore\,\text{ALP's mean lifetime : } \tau\_a^t \equiv \gamma(t) \tau\_a = \frac{64\pi E\_a(t)}{g\_a^2 m\_a^4} \equiv \frac{1}{\Gamma_a^t} $$ ] ??? ALP์ mean lifetime์ ALP์ mass์ ๊ด์์์ coupling constant, ๊ทธ๋ฆฌ๊ณ ALP์ total energy๋ก ์ ์๋ฉ๋๋ค. ALP์ mean lifetime์ด ์งง์ ๊ฒฝ์ฐ์๋ ์ด๋ ๊ฑฐ์ ์์๋ก ์ฌ๊ฒจ์ง ์ ์์ง๋ง, ALP์ mean lifetime์ด ์ถฉ๋ถํ ๊ธด ๊ฒฝ์ฐ์๋ energy์ redshiftํจ๊ณผ๊ฐ ์ปค์ ธ์ lifetime์ ๋ณํ๋ฅผ ์ค ์ ์์ต๋๋ค. ์ผ์ชฝ ๊ทธ๋ฆผ์ ์ ํฌ ์ฐ๊ตฌ์์ ์ง์คํ ์์ญ์์์ non-relativistic mean lifetime์ ํํํ ๊ฒ์ธ๋ฐ, ์ ๋ฐ ๊ฐ๋์ ์์ญ์ด ์ฐ์ฃผ๋์ด์ ๋น์ทํ๊ฑฐ๋ ๋ ํฌ๋ค๋ ๊ฒ์ ๋ณผ ์ ์์ต๋๋ค. ์ด๋ฐ scale์์๋ ALP์ mean lifetime์ ๋ ์ด์ ์์๊ฐ ์๋๋ผ time dependent variable๋ก ๊ณ ๋ คํด์ผ ํ ๊ฒ์ ๋๋ค. ์ฐ์ธก ๊ทธ๋ฆผ์ time dependence๋ฅผ ๊ณ ๋ คํ 10MeV ์ง๋์ ALP ์ ์๋ค์ ์๋์ง๋ณ mean lifetime์ ๋๋ค. ์ด ๊ทธ๋ฆผ์์๋ CMB time์ ์์ฑ๋ ALP๋ค์ด ํ์ฌ ์ฐ์ฃผ๊น์ง ๋ ์์ค๋ฉด์ redshift์ ์ํด lifetime์ด ๋ฐ๋๋ ๊ฒ์ ๋ณผ ์ ์๋๋ฐ, ์ด ์ฐจ์ด๊ฐ ๊ฝค ํฌ๋ค๋ ๊ฒ์ ์ ์ ์์ต๋๋ค. --- ### Decay equation * **Time-varying decay equation** $$ \small \frac{\text{d}N\_a}{dt} = -\Gamma\_a^t N\_a ~\Rightarrow~N\_a(t) = N\_a(t\_e)\exp\left(-\int\_{t\_e}^t \Gamma\_a^{t'-t\_e} \,\text{d}t'\right) $$
* **Time-varying decay in terms of Survival analysis**
[D. G. Kleinbaum (1996) Survival analysis: A self learning text. New York: Springer]
Survival analysis | Expression | Time-varying decay | Notation :---------------: | :--------: | :----------------: | :--------: Survival function | $S(t) = \mathbb{P}[X > t]$ | Survival probability | $P_\text{surv}$ Hazard function | $\displaystyle h(t) = -\frac{\text{d}}{\text{d}t}[\log S(t)]$ | Decay rate | $\Gamma_a^t$ Failure density function | $\displaystyle \int\_0^t f(u)du = 1-S(t)$ | Decay density function | $\mathcal{P}_\text{decay}$ ??? ์ฐ๋ฆฌ๋ particle๋ค์ด ํ ์๊ฐ์ ์ผ๋ง๋ decayํ๋ ์ง๋ฅผ ์์๋ด๊ธฐ ์ํ์ฌ decay equation์ ์ฌ์ฉํฉ๋๋ค. ์ด๋ ์์ฃผ ํต์์ ์ธ ๋ฐฉ๋ฒ์ด์ง๋ง, decay rate์ด time dependentํ๋ค๋ ๊ฒ์ ๊ณ ๋ คํ๋ฉด ์์์ด ๋ฌ๋ผ์ง๋๋ค. ์ด๊ฒ์ ํด๋ ๋จ์ํ exponential decay๊ฐ ์๋๋ผ decay rate์ ์๊ฐ์ ๋ํด ์ ๋ถํ ๊ฐ์ด exponential์ ๋ค์ด์๋ ๊ผด๋ก ๋ํ๋ฉ๋๋ค. ์ด ํด๋ฅผ ๋ถ์ํ๊ธฐ ์ํ์ฌ ์ฐ๋ฆฌ๋ ์๋ช ํต๊ณํ์ ํ ๋ถ์ผ์ธ survival analysis๋ฅผ ์ฌ์ฉํ์ฌ ํํํ ์ ์์ต๋๋ค. ์ด๋ฅผ ์ด์ฉํ์ฌ ๊ธฐ์กด์ ์์ฃผ ์ฌ์ฉ๋๋ Survival probability์ decay rate์ time-varying decay์์ ์ ์ ์ํ ์ ์์ ๋ฟ๋๋ฌ ํ๋ฅ ๋ถํฌํจ์์ธ Decay density function์ ์๋ก ๋์ ํ์ฌ ํฅํ ๊ณ์ฐ์ ์ฌ์ฉํ ์ ์์ต๋๋ค. --- class: split-50 ### Decay number density * **Survival probability & Decay density function** $$ \begin{aligned} \small P\_\text{surv} (t;t\_e,E\_a) &= \small \exp \left(-\int\_{t\_e}^t \Gamma\_a^{t'-t\_e}\,\text{d}t'\right)\\\\ \small \mathcal{P}\_\text{decay}(t;t\_e,E\_a) &= \small P\_\text{surv}(t;t\_e,E\_a) \times \Gamma\_a^{t-t\_e} \end{aligned} $$ * **Differential number density for decaying ALPs** .left-column[
From $\small (t_e, E_a)$ to $\small t$ :
$$ \small \phi_a(t;t_e,E_a) \,=\, \frac{\text{d}n_a}{\text{d}t_e}\times \mathcal{P}_\text{decay}(t;t_e,E_a) $$
] .right-column[
From $\small t\_e$ to $\small (t,\widetilde{E}\_a)$ :
$$ \small \phi\_a(t,\widetilde{E}\_a;t\_e) = \phi(t;t\_e,E\_a) \Big{|}\_{E\_a = \mathcal{R}^{-1}\_{t\to t\_e}(\widetilde{E}\_a)} $$
] $$ \small \therefore\,\text{At $(t, E\_a)$ :}\quad \frac{\text{d}n\_a^{\text{dec}}}{\text{d}t} = \int\_{t\_e^\text{min}}^t \left(\frac{1+z(t)}{1+z(t\_e)}\right)^3 \phi\_a (t,E\_a;t\_e)\text{d}t\_e $$ ??? ์์ ๋ฐฉ์ ์๊ณผ ํ๋ฅผ ์ด์ฉํ์ฌ Survival probability์ Decay density function์ ๊ตฌํ ๊ฒฐ๊ณผ๋ ์ฒ์ ์๊ณผ ๊ฐ์ต๋๋ค. Survival probability๊ฐ ์๋ฏธํ๋ ๊ฒ์ t_e์์ ์ ์๋์ง E_a๋ก ๋ฐ์ํ ์ ์๊ฐ t ์์ ์์ ์ด์์์ ํ๋ฅ ์ ์๋ฏธํ๊ณ , Decay density function์ t_e ์์ ์ E_a๋ก ๋ฐ์ํ ์ ์๊ฐ t ์์ ์ ์๊ฐ์ ์ผ๋ก decayํ๋ ๋น์จ์ ์๋ฏธํฉ๋๋ค. ์ด๋ฅผ ํ์ฉํ์ฌ ๋ฐ์์์ ๋์ ์๋์ง๋ฅผ ์ง์ ํ์ ๋ ์ ์์ ์๊ฐ t์์์ decay number density๋ฅผ ๊ตฌํ ์ ์์ผ๋ฉฐ ๋ฐ๋๋ก decay ์์ ๋์ ์๋์ง๋ฅผ ์ง์ ํ์ ๋ ์ ์์ decay number density๋ ๊ตฌํ ์ ์์ต๋๋ค. ์ด๋ ๊ฒ ์ป์ด์ง ๊ฒฐ๊ณผ๋ค์ redshift ๋ฅผ ์ ์ฉํ์ฌ ์ ๋ถํ๋ฉด ๊ฒฐ๊ตญ PBH๊ฐ ๊พธ์คํ ๋ง๋ค์ด๋ธ ALP๋ค์ ์๊ฐ t์์์ decay number density๋ฅผ ๋ค์๊ณผ ๊ฐ์ด ๊ตฌํ ์ ์์ต๋๋ค. --- class: split-50 ### Boosted ALP decay to photons * Using *Two body decay kinematics* to describe the decay of ALP to photon: $\small a \rightarrow \gamma\gamma$ * Lorentz boost : `\(\small E_{\gamma} = E^*_{\gamma} (\gamma \pm \sqrt{\gamma^2 -1}) \)` where `\(\small E_\gamma^* = m_a / 2\)` .center[
] --- class: split-50 ### Boosted & Redshifted photon flux .left-column[ .center[
Fig.5 Boosted photon spectrum
] ] .right-column[ * **Boosted photon flux**
[K. Agashe, R. Franceschini, and D. Kim, Phys. Rev. D 88, 057701 (2013)]
$$ \small \left\\{\left(E\_a,\frac{1}{E\_a}\frac{\text{d}n\_a^\text{dec}}{\text{d}t}\right)\right\\}\overset{\text{Boost}}{\longrightarrow} \left\\{\left(E\_\gamma,\frac{1}{E\_\gamma}\frac{\text{d}n\_\gamma}{\text{d}t}\right)\right\\} $$ * **Integration of redshifted photon flux**
[B. J. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, Phys. Rev. D 81, 104019 (2010)]
$$ \small \frac{\text{d}F\_{\gamma\_0}}{\text{d}E\_{\gamma\_0}} = \int\_{t\_\text{CMB}}^{t\_0} \frac{\text{d}t}{(1+z(t))^3 E\_{\gamma\_0}} \frac{\text{d}n\_\gamma}{\text{d}t}\Big{|}\_{E\_\gamma=(1+z(t))E\_{\gamma\_0}} $$ ] ??? ์ด๋ ๊ฒ ๊ตฌํด์ง decay number density๋ ์์ ๋ฐํ์์ ๋ค๋ค๋ฏ์ด Boostํจ๊ณผ๋ฅผ ๊ณ ๋ คํ์ฌ photon spectrum์ผ๋ก ๋ณํํด์ผํฉ๋๋ค. ๊ทธ๋ ๊ฒ ๋ณํ๋ photon์ redshift ํจ๊ณผ๋ฅผ ๊ณ ๋ คํ์ฌ ์ ๋ถํ๋ฉด ์ ํฌ๊ฐ ๊ตฌํ๊ณ ์ ํ๋ differential flux๋ฅผ ๊ตฌํ ์ ์์ต๋๋ค. --- ### Summary of time-varying decay .center[
] $$\tiny \displaystyle \text{where } \mathcal{Z} = \left(\frac{1+z(t)}{1+z(t_e)}\right)^3$$ ??? ๋ค์์ Time-varying decay์ ์ ์ฒด ํ๋ฆ์ ์ ๋ฆฌํ ๊ทธ๋ฆผ์ ๋๋ค. PBH๊ฐ ์๊ฐ t_e์์ ALP๋ฅผ ๋ฐฉ์ถํ๊ณ ๋ฐฉ์ถ๋ ALP๋ decay์ redshift ํจ๊ณผ๋ก ์ธํ์ฌ ์ค์ด๋ค๊ฒ ๋ฉ๋๋ค. ์ด์ฝ๊ณ ์๊ฐ t์์ ALP๊ฐ ์ผ๋ง๋ decayํ๋ ์ง๋ฅผ ๊ณ์ฐํ๊ณ ์ด์ boost ํจ๊ณผ๋ฅผ ๊ณ ๋ คํ์ฌ photon spectrum์ ๊ตฌํด๋ ๋๋ค. ๋ง์ง๋ง์ผ๋ก ํด๋น photon๋ค์ด ํ์ฌ๊น์ง ๋ ์์ค๋ฉด์ ๊ฒช์ redshift๋ฅผ ๋ฐ์ํด์ฃผ๋ฉด ์ต์ข ์ ์ผ๋ก differential flux๋ฅผ ์ป์ ์ ์์ต๋๋ค. --- class: split-50 ### Differential flux of photons .left-column[ .center[
Fig.6 Differential flux for $g\_a=10^{-16}\text{GeV}^{-1}$
] ] .right-column[ .center[
Fig.7 Differential flux for $g\_a=10^{-14}\text{GeV}^{-1}$
] ] ??? ์ด๋ ๊ฒ ๋์จ ๊ฒฐ๊ณผ๋ฅผ ์์ ๋ฐํ์ Prompt decay์ ๋น๊ตํด๋ณด๋ฉด ์ด์ ๊ฐ์ต๋๋ค. ์์ coupling constant์ ๋ํด์๋ lifetime์ด ๊ธธ์ด์ง๋ฏ๋ก prompt decay ๋ณด๋ค๋ ๋ฎ์ flux๋ฅผ ๋ณด์ฌ์ฃผ๊ณ , coupling constant๊ฐ ์ผ์ ๊ฐ์ ๋์ด๊ฐ๋ฉด lifetime์ด ์ถฉ๋ถํ ์งง์์ ธ์ prompt decay์ ์ ํํ ๊ฐ์ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ฌ์ค๋๋ค. --- ### ALPs : "The dent puller"
.center[
] --- class: split-50 ### e-ASTROGAM
[Experimental Astronomy 44 (2017) 25-82]
* **A gamma-ray mission** and the planned launch date is 2029 by ESA .left-column[ * Sensitive in **1 ~ 1000 MeV** range * 1-2 orders of magnitude improvement in sensitivity comparing to COMPTEL experiment .center[
] ] .right-column[ .center[
] ] --- class: split-50 ### e-ASTROGAM for PBH .left-column[ .center[
Fig.8 $f\_\text{PBH}$ for SM photon only
] ] .right-column[ .center[
Fig.9 $f\_\text{PBH}$ for total photon
] ] ??? ์์ ๋ฐ์์ง ํ์์ด ๋ฐํํ๋ ๊ฒ๊ณผ ๊ฐ์ด ์ด๋ ๊ฒ ์ป์ด์ง flux๋ฅผ e-ASTROGAM์ sensitivity์ ๋น๊ตํ์ฌ f_PBH ๊ฐ์ ์ป์ด๋ ๋๋ค. --- class: split-50 .left-column[ ### Results & Summary .center[
Fig.10 New constraint for ALPs ($m\_\text{PBH}=10^{15}\text{g}$)
] ] .right-column[
GC
: M. J. Dolan, F. J. Hiskens, and R. R. Volkas, [arXiv:2207.03102] (2022)
SN1987A
: J. Jaeckel, P. C. Malta, and J. Redondo, Phys. Rev. D 98, 055032 (2018)
.center[
Fig.11 New constraint for ALPs ($m_\text{PBH}=10^{16}\text{g}$)
] ]
1๏ธโฃ If a particle has a very long lifetime, we should consider the **time-varying decay**. 2๏ธโฃ When consider ALPs decay, we should consider the **boost effect** to photon. โ๏ธ Using PBH as a source of ALPs, we can give a new constraint on ALPs.