1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
use crate::special::lanczos::{gamma_approx, ln_gamma_approx};
use std::f64::consts::PI;
/// Gaussian function
///
/// `N(x|μ,σ) = 1/√(2πσ^2) exp(-(x-μ)^2/(2σ^2))`
pub fn gaussian(x: f64, mu: f64, sigma: f64) -> f64 {
1f64 / ((2f64 * PI).sqrt() * sigma) * (-0.5 * ((x - mu) / sigma).powi(2)).exp()
}
/// Gamma function
///
/// # Description
/// Use Lanczos approximation to implement Gamma function ($g=5, n=7$)
///
/// # References
/// * [Robert Munafo, Coefficients for the Lanczos Approximation to the Gamma Function](https://mrob.com/pub/ries/lanczos-gamma.html)
/// * [Paul Godfrey, A note on the computation of the convergent Lanczos complex Gamma approximation (web page), 2001.](http://my.fit.edu/~gabdo/gamma.txt)
pub fn gamma(x: f64) -> f64 {
gamma_approx(x)
}
/// Logarithm Gamma function
///
/// # Description
/// Use Lanczos approximation to implement Gamma function ($g=5, n=7$)
///
/// # References
/// * [Robert Munafo, Coefficients for the Lanczos Approximation to the Gamma Function](https://mrob.com/pub/ries/lanczos-gamma.html)
/// * [Paul Godfrey, A note on the computation of the convergent Lanczos complex Gamma approximation (web page), 2001.](http://my.fit.edu/~gabdo/gamma.txt)
pub fn ln_gamma(x: f64) -> f64 {
ln_gamma_approx(x)
}
/// Pochhammer symbol
pub fn poch(x: f64, n: usize) -> f64 {
let mut s = 1f64;
for i in 0..n {
s *= x + i as f64;
}
s
}
// /// Digamma function
// ///
// /// Wrapper of `digamma` function of `special` crate
// pub fn digamma(x: f64) -> f64 {
// x.digamma()
// }
/// Regularized incomplete gamma integral (Lower)
///
/// Wrapper of `gammp` function of `puruspe` crate
pub fn inc_gamma(a: f64, x: f64) -> f64 {
puruspe::gammp(a, x)
}
/// Inverse of regularized incomplete gamma integral (Lower)
///
/// Wrapper of `invgammp` function of `puruspe` crate
pub fn inv_inc_gamma(p: f64, a: f64) -> f64 {
puruspe::invgammp(p, a)
}
/// Error function
///
/// Wrapper of `erf` function of `puruspe` crate
pub fn erf(x: f64) -> f64 {
puruspe::erf(x)
}
/// Complement error function
///
/// Wrapper of `erfc` function of `puruspe` crate
pub fn erfc(x: f64) -> f64 {
puruspe::erfc(x)
}
/// Inverse error function
///
/// Wrapper of `inverf` function of `puruspe` crate
pub fn inv_erf(x: f64) -> f64 {
puruspe::inverf(x)
}
/// Inverse complementary error function
///
/// Wrapper of `inverfc` function of `puruspe` crate
pub fn inv_erfc(p: f64) -> f64 {
puruspe::inverfc(p)
}
/// Beta function
///
/// Wrapper of `beta` function of `puruspe` crate
pub fn beta(a: f64, b: f64) -> f64 {
puruspe::beta(a, b)
}
/// Regularized incomplete Beta function
///
/// Wrapper of `betai` function of `puruspe` crate
pub fn inc_beta(a: f64, b: f64, x: f64) -> f64 {
puruspe::betai(a, b, x)
}
/// Inverse regularized incomplete beta function
///
/// Wrapper of `invbetai` function of `puruspe` crate
pub fn inv_inc_beta(p: f64, a: f64, b: f64) -> f64 {
puruspe::invbetai(p, a, b)
}
/// Phi (CDF for Normal Dist)
///
/// $$\Phi(x) = \frac{1}{2}\left[1 + \text{erf}\left(\frac{x}{\sqrt{2}}\right) \right]$$
pub fn phi(x: f64) -> f64 {
0.5 * (1f64 + erf(x / 2f64.sqrt()))
}
/// The principal branch of the Lambert W function, W_0(`z`).
///
/// Returns [`NAN`](f64::NAN) if the given input is smaller than -1/e (≈ -0.36787944117144233).
///
/// Use [`Precise`](LambertWAccuracyMode::Precise) for 50 bits of accuracy and the [`Simple`](LambertWAccuracyMode::Simple) mode
/// for only 24 bits, but with faster execution time.
///
/// Wrapper of the `lambert_w_0` and `sp_lambert_w_0` functions of the `puruspe` crate.
///
/// # Reference
///
/// [Toshio Fukushima, Precise and fast computation of Lambert W function by piecewise minimax rational function approximation with variable transformation](https://www.researchgate.net/publication/346309410_Precise_and_fast_computation_of_Lambert_W_function_by_piecewise_minimax_rational_function_approximation_with_variable_transformation)
pub fn lambert_w0(z: f64, mode: LambertWAccuracyMode) -> f64 {
match mode {
LambertWAccuracyMode::Precise => puruspe::lambert_w0(z),
LambertWAccuracyMode::Simple => puruspe::sp_lambert_w0(z),
}
}
/// The secondary branch of the Lambert W function, W_-1(`z`).
///
/// Returns [`NAN`](f64::NAN) if the given input is positive or smaller than -1/e (≈ -0.36787944117144233).
///
/// Use [`Precise`](LambertWAccuracyMode::Precise) for 50 bits of accuracy and the [`Simple`](LambertWAccuracyMode::Simple) mode
/// for only 24 bits, but with faster execution time.
///
/// Wrapper of the `lambert_w_m1` and `sp_lambert_w_m1` functions of the `puruspe` crate.
///
/// # Reference
///
/// [Toshio Fukushima, Precise and fast computation of Lambert W function by piecewise minimax rational function approximation with variable transformation](https://www.researchgate.net/publication/346309410_Precise_and_fast_computation_of_Lambert_W_function_by_piecewise_minimax_rational_function_approximation_with_variable_transformation)
pub fn lambert_wm1(z: f64, mode: LambertWAccuracyMode) -> f64 {
match mode {
LambertWAccuracyMode::Precise => puruspe::lambert_wm1(z),
LambertWAccuracyMode::Simple => puruspe::sp_lambert_wm1(z),
}
}
/// Decides the accuracy mode of the Lambert W functions.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum LambertWAccuracyMode {
/// Faster, 24 bits of accuracy.
Simple,
/// Slower, 50 bits of accuracy.
Precise,
}