peroxide/numerical/utils.rs
1use crate::structure::ad::AD::*;
2use crate::structure::ad::*;
3use crate::structure::matrix::*;
4use crate::traits::matrix::MatrixTrait;
5use crate::util::non_macro::{cat, zeros};
6
7/// Jacobian Matrix
8///
9/// # Description
10/// : Exact jacobian matrix using Automatic Differenitation
11///
12/// # Type
13/// `(F, &Vec<f64>) -> Matrix where F: Fn(&Vec<AD>) -> Vec<AD>`
14///
15/// # Examples
16/// ```
17/// #[macro_use]
18/// extern crate peroxide;
19/// use peroxide::fuga::*;
20///
21/// fn main() {
22/// let x = c!(1, 1);
23/// let j = jacobian(f, &x);
24/// j.print();
25///
26/// // c[0] c[1]
27/// // r[0] 1 -1
28/// // r[1] 1 2
29/// }
30///
31/// fn f(xs: &Vec<AD>) -> Vec<AD> {
32/// let x = xs[0];
33/// let y = xs[1];
34///
35/// vec![
36/// x - y,
37/// x + 2.*y,
38/// ]
39/// }
40/// ```
41#[allow(non_snake_case)]
42pub fn jacobian<F: Fn(&Vec<AD>) -> Vec<AD>>(f: F, x: &Vec<f64>) -> Matrix {
43 let l = x.len();
44 let mut x_ad: Vec<AD> = x.iter().map(|&x| AD1(x, 0f64)).collect();
45 let l2 = f(&x_ad).len();
46
47 let mut J = zeros(l2, l);
48
49 for i in 0..l {
50 x_ad[i][1] = 1f64;
51 let slopes: Vec<f64> = f(&x_ad).iter().map(|ad| ad.dx()).collect();
52 J.subs_col(i, &slopes);
53 x_ad[i][1] = 0f64;
54 }
55 J
56}
57
58///// Hessian Matrix
59//#[allow(non_snake_case)]
60//pub fn hessian<F: Fn(&Vec<AD>) -> AD>(f: F, x: &Vec<f64>) -> Matrix {
61// let l = x.len();
62// let mut x_ad: Vec<AD> = x.iter().map(|&x| AD2(x, 0f64, 0f64)).collect();
63//
64// let mut H = zeros(l, l);
65//
66// for i in 0 .. l {
67// for j in 0 .. l {
68// }
69// }
70//
71// unimplemented!()
72//}
73
74//#[allow(non_snake_case)]
75//pub fn jacobian_ad<F: Fn(&Vec<AD>) -> Vec<AD>>(f: F, x: &Vec<AD>) -> Vec<Vec<AD>> {
76// let l = x.len();
77// let mut x_ad: Vec<AD> = x.clone().into_iter().map(|mut t| {
78// t.iter_mut().skip(1).for_each(|k| *k = 0f64);
79// t
80// }).collect();
81// let l2 = f(&x_ad).len();
82//
83// let mut JT: Vec<Vec<AD>> = vec![vec![AD0(0f64); l2]; l];
84//
85// for i in 0 .. l {
86// x_ad[i][1] = 1f64;
87// let ads = f(&x_ad);
88// JT[i] = ads;
89// x_ad[i][1] = 0f64;
90// }
91// JT
92//}
93
94/// TriDiagonal Matrix Algorithm (TDMA)
95///
96/// # Description
97///
98/// Solve tri-diagonal matrix system efficiently (O(n))
99/// ```bash
100/// |b0 c0 | |x0| |y0|
101/// |a1 b1 c1 | |x1| |y1|
102/// | a2 b2 c2 | |x2| = |y2|
103/// | ... | |..| |..|
104/// | am bm| |xm| |ym|
105/// ```
106///
107/// # Caution
108///
109/// You should apply boundary condition yourself
110pub fn tdma(a_input: Vec<f64>, b_input: Vec<f64>, c_input: Vec<f64>, y_input: Vec<f64>) -> Matrix {
111 let n = b_input.len();
112 assert_eq!(a_input.len(), n - 1);
113 assert_eq!(c_input.len(), n - 1);
114 assert_eq!(y_input.len(), n);
115
116 let a = cat(0f64, &a_input);
117 let mut b = b_input.clone();
118 let c = {
119 let mut c_temp = c_input.clone();
120 c_temp.push(0f64);
121 c_temp.clone()
122 };
123 let mut y = y_input.clone();
124
125 // Forward substitution
126 let mut w = vec![0f64; n];
127 for i in 1..n {
128 w[i] = a[i] / b[i - 1];
129 b[i] = b[i] - w[i] * c[i - 1];
130 y[i] = y[i] - w[i] * y[i - 1];
131 }
132
133 // Backward substitution
134 let mut x = vec![0f64; n];
135 x[n - 1] = y[n - 1] / b[n - 1];
136 for i in (0..n - 1).rev() {
137 x[i] = (y[i] - c[i] * x[i + 1]) / b[i];
138 }
139 x.into()
140}