1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
use crate::structure::ad::AD::*;
use crate::structure::ad::*;
use crate::structure::matrix::*;
use crate::traits::matrix::MatrixTrait;
use crate::util::non_macro::{cat, zeros};
/// Jacobian Matrix
///
/// # Description
/// : Exact jacobian matrix using Automatic Differenitation
///
/// # Type
/// `(F, &Vec<f64>) -> Matrix where F: Fn(&Vec<AD>) -> Vec<AD>`
///
/// # Examples
/// ```
/// #[macro_use]
/// extern crate peroxide;
/// use peroxide::fuga::*;
///
/// fn main() {
/// let x = c!(1, 1);
/// let j = jacobian(f, &x);
/// j.print();
///
/// // c[0] c[1]
/// // r[0] 1 -1
/// // r[1] 1 2
/// }
///
/// fn f(xs: &Vec<AD>) -> Vec<AD> {
/// let x = xs[0];
/// let y = xs[1];
///
/// vec![
/// x - y,
/// x + 2.*y,
/// ]
/// }
/// ```
#[allow(non_snake_case)]
pub fn jacobian<F: Fn(&Vec<AD>) -> Vec<AD>>(f: F, x: &Vec<f64>) -> Matrix {
let l = x.len();
let mut x_ad: Vec<AD> = x.iter().map(|&x| AD1(x, 0f64)).collect();
let l2 = f(&x_ad).len();
let mut J = zeros(l2, l);
for i in 0..l {
x_ad[i][1] = 1f64;
let slopes: Vec<f64> = f(&x_ad).iter().map(|ad| ad.dx()).collect();
J.subs_col(i, &slopes);
x_ad[i][1] = 0f64;
}
J
}
///// Hessian Matrix
//#[allow(non_snake_case)]
//pub fn hessian<F: Fn(&Vec<AD>) -> AD>(f: F, x: &Vec<f64>) -> Matrix {
// let l = x.len();
// let mut x_ad: Vec<AD> = x.iter().map(|&x| AD2(x, 0f64, 0f64)).collect();
//
// let mut H = zeros(l, l);
//
// for i in 0 .. l {
// for j in 0 .. l {
// }
// }
//
// unimplemented!()
//}
//#[allow(non_snake_case)]
//pub fn jacobian_ad<F: Fn(&Vec<AD>) -> Vec<AD>>(f: F, x: &Vec<AD>) -> Vec<Vec<AD>> {
// let l = x.len();
// let mut x_ad: Vec<AD> = x.clone().into_iter().map(|mut t| {
// t.iter_mut().skip(1).for_each(|k| *k = 0f64);
// t
// }).collect();
// let l2 = f(&x_ad).len();
//
// let mut JT: Vec<Vec<AD>> = vec![vec![AD0(0f64); l2]; l];
//
// for i in 0 .. l {
// x_ad[i][1] = 1f64;
// let ads = f(&x_ad);
// JT[i] = ads;
// x_ad[i][1] = 0f64;
// }
// JT
//}
/// TriDiagonal Matrix Algorithm (TDMA)
///
/// # Description
///
/// Solve tri-diagonal matrix system efficiently (O(n))
/// ```bash
/// |b0 c0 | |x0| |y0|
/// |a1 b1 c1 | |x1| |y1|
/// | a2 b2 c2 | |x2| = |y2|
/// | ... | |..| |..|
/// | am bm| |xm| |ym|
/// ```
///
/// # Caution
///
/// You should apply boundary condition yourself
pub fn tdma(a_input: Vec<f64>, b_input: Vec<f64>, c_input: Vec<f64>, y_input: Vec<f64>) -> Matrix {
let n = b_input.len();
assert_eq!(a_input.len(), n - 1);
assert_eq!(c_input.len(), n - 1);
assert_eq!(y_input.len(), n);
let a = cat(0f64, &a_input);
let mut b = b_input.clone();
let c = {
let mut c_temp = c_input.clone();
c_temp.push(0f64);
c_temp.clone()
};
let mut y = y_input.clone();
// Forward substitution
let mut w = vec![0f64; n];
for i in 1..n {
w[i] = a[i] / b[i - 1];
b[i] = b[i] - w[i] * c[i - 1];
y[i] = y[i] - w[i] * y[i - 1];
}
// Backward substitution
let mut x = vec![0f64; n];
x[n - 1] = y[n - 1] / b[n - 1];
for i in (0..n - 1).rev() {
x[i] = (y[i] - c[i] * x[i + 1]) / b[i];
}
x.into()
}