1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
//! To optimize parametric model (non-linear regression)
//!
//! ## `Optimizer` structure
//!
//! ### Declaration
//!
//! ```rust
//! extern crate peroxide;
//! use peroxide::fuga::*;
//! use std::collections::HashMap;
//!
//! pub struct Optimizer<F>
//! where F: Fn(&Vec<f64>, Vec<AD>) -> Option<Vec<AD>> {
//! domain: Vec<f64>,
//! observed: Vec<f64>,
//! func: Box<F>,
//! param: Vec<AD>,
//! max_iter: usize,
//! error: f64,
//! method: OptMethod,
//! option: HashMap<OptOption, bool>,
//! hyperparams: HashMap<String, f64>,
//! }
//! ```
//!
//! ### Method (Should fill)
//!
//! * `new` : Declare new Optimizer. **Should be mutable**
//! * `set_init_param` : Input initial parameter
//! * `set_max_iter` : Set maximum number of iterations
//! * `set_method` : Set method to optimization
//!
//! ### Method (Optional)
//!
//! * `get_domain` : Get domain
//! * `get_error` : Root mean square error
//! * `get_hyperparam` : Get hyperparameter
//! * `set_lr` : Set learning rate (For `GradientDescent`)
//! * `set_lambda_init` : Set initial value of lambda (For `LevenbergMarquardt`)
//! * `set_lambda_max` : Set maximum value of lambda (For `LevenbergMarquardt`)
//!
//! ### Method (Generate result)
//!
//! * `optimize` : Optimize
//!
//! ## Example
//!
//! * Optimize $y = x^n$ model with $y = x^2$ with gaussian noise.
//!
//! ```rust
//! #[macro_use]
//! extern crate peroxide;
//! use peroxide::fuga::*;
//!
//! fn main() {
//! // To prepare noise
//! let normal = Normal(0f64, 0.1f64);
//! let normal2 = Normal(0f64, 100f64);
//!
//! // Noise to domain
//! let mut x = seq(0., 99., 1f64);
//! x = zip_with(|a, b| (a + b).abs(), &x, &normal.sample(x.len()));
//!
//! // Noise to image
//! let mut y = x.fmap(|t| t.powi(2));
//! y = zip_with(|a, b| a + b, &y, &normal2.sample(y.len()));
//!
//! // Initial parameter
//! let n_init = vec![1f64];
//! let data = hstack!(x.clone(), y.clone());
//!
//! // Optimizer setting
//! let mut opt = Optimizer::new(data, quad);
//! let p = opt.set_init_param(n_init)
//! .set_max_iter(50)
//! .set_method(LevenbergMarquardt)
//! .set_lambda_init(1e-3) // Optional: Set initial value of lambda (Only for `LevenbergMarquardt`)
//! .set_lambda_max(1e+3) // Optional: Set maximum bound of lambda (Only for `LevenbergMarquardt`)
//! .optimize();
//! p.print(); // Optimized parameter
//! opt.get_error().print(); // Optimized RMSE
//!
//! // Plot
//! //#[cfg(feature = "plot")]
//! //{
//! // let z = quad(&x, p.to_ad_vec()).unwrap().to_f64_vec();
//! // let mut plt = Plot2D::new();
//! // plt.set_domain(x)
//! // .insert_image(y) // plot data
//! // .insert_image(z) // plot fit
//! // .set_legend(vec!["Data", "Fit"])
//! // .set_title("Test ($y=x^2$ with noise)")
//! // .set_path("example_data/lm_test.png")
//! // .set_marker(vec![Point, Line])
//! // .savefig().expect("Can't draw a plot");
//! //}
//! }
//!
//! fn quad(x: &Vec<f64>, n: Vec<AD>) -> Option<Vec<AD>> {
//! Some(
//! x.clone().into_iter()
//! .map(|t| AD1(t, 0f64))
//! .map(|t| t.pow(n[0]))
//! .collect()
//! )
//! }
//! ```
//!
//! ![LM test](https://raw.githubusercontent.com/Axect/Peroxide/master/example_data/lm_test.png)
pub use self::OptMethod::{GaussNewton, GradientDescent, LevenbergMarquardt};
use self::OptOption::{InitParam, MaxIter};
use crate::numerical::utils::jacobian;
use crate::structure::ad::{ADVec, AD};
use crate::structure::matrix::Matrix;
use crate::traits::matrix::{LinearAlgebra, MatrixTrait};
use crate::util::useful::max;
use std::collections::HashMap;
#[derive(Debug, Clone, Copy)]
pub enum OptMethod {
GradientDescent,
GaussNewton,
LevenbergMarquardt,
}
#[derive(Debug, Clone, Copy, PartialOrd, PartialEq, Eq, Hash)]
pub enum OptOption {
InitParam,
MaxIter,
}
/// Optimizer for optimization (non-linear regression)
///
/// # Methods
/// * Gradient Descent
/// * Gauss Newton
/// * Levenberg Marquardt
///
/// # Caution
/// * `func` should be boxed. (This allows more generic function)
pub struct Optimizer<F>
where
F: Fn(&Vec<f64>, Vec<AD>) -> Option<Vec<AD>>,
{
domain: Vec<f64>,
observed: Vec<f64>,
func: Box<F>,
param: Vec<AD>,
max_iter: usize,
error: f64,
method: OptMethod,
option: HashMap<OptOption, bool>,
hyperparams: HashMap<String, f64>,
}
impl<F> Optimizer<F>
where
F: Fn(&Vec<f64>, Vec<AD>) -> Option<Vec<AD>>,
{
pub fn new(data: Matrix, func: F) -> Self {
let mut default_option: HashMap<OptOption, bool> = HashMap::new();
default_option.insert(InitParam, false);
default_option.insert(MaxIter, false);
Optimizer {
domain: data.col(0),
observed: data.col(1),
func: Box::new(func),
param: vec![],
max_iter: 0,
error: 0f64,
method: LevenbergMarquardt,
option: default_option,
hyperparams: HashMap::new(),
}
}
/// Get domain
pub fn get_domain(&self) -> Vec<f64> {
self.domain.clone()
}
/// Get error
pub fn get_error(&self) -> f64 {
self.error
}
/// Get hyperparameter (learning rate or lambda or etc.)
pub fn get_hyperparam(&self, key: &str) -> Option<&f64> {
self.hyperparams.get(key)
}
/// Set initial parameter
pub fn set_init_param(&mut self, p: Vec<f64>) -> &mut Self {
if let Some(x) = self.option.get_mut(&InitParam) {
*x = true
}
self.param = p.to_ad_vec();
self
}
/// Set maximum iteration
pub fn set_max_iter(&mut self, n: usize) -> &mut Self {
if let Some(x) = self.option.get_mut(&MaxIter) {
*x = true
}
self.max_iter = n;
self
}
/// Set optimization method
pub fn set_method(&mut self, method: OptMethod) -> &mut Self {
self.method = method;
self
}
/// Set learning rate for `GradientDescent`
pub fn set_lr(&mut self, lr: f64) -> &mut Self {
self.hyperparams.insert("lr".to_string(), lr);
self
}
/// Set initial lambda for `LevenbergMarquardt`
pub fn set_lambda_init(&mut self, lambda_init: f64) -> &mut Self {
self.hyperparams
.insert("lambda_init".to_string(), lambda_init);
self
}
/// Set maximum lambda for `LevenbergMarquardt`
pub fn set_lambda_max(&mut self, lambda_max: f64) -> &mut Self {
self.hyperparams
.insert("lambda_max".to_string(), lambda_max);
self
}
/// Main function for optimization
pub fn optimize(&mut self) -> Vec<f64> {
// Receive initial data
let (x_vec, y_vec) = (self.domain.clone(), self.observed.clone());
let (p_init, max_iter) = (self.param.clone(), self.max_iter);
let safe_f = |p: &Vec<AD>| (self.func)(&x_vec, p.clone()).unwrap();
let unsafe_f = |p: Vec<AD>| (self.func)(&x_vec, p);
// Take various form of initial data
let p_init_vec = p_init.to_f64_vec();
let y = y_vec.into();
// Declare mutable values
let mut p: Matrix = p_init_vec.clone().into();
let mut j = jacobian(safe_f, &p_init_vec);
let mut y_hat: Matrix = safe_f(&p_init).to_f64_vec().into();
let mut jtj = &j.t() * &j;
let mut valid_p = p.clone();
let mut err_stack = 0usize;
match self.method {
GradientDescent => {
let alpha = *self.hyperparams.get("lr").unwrap_or(&1e-3);
for i in 0..max_iter {
let h = alpha * j.t() * (&y - &y_hat);
let p_cand = &p + &h;
match unsafe_f(p_cand.data.to_ad_vec()) {
Some(value) => {
p = p_cand;
valid_p = p.clone();
err_stack = 0;
j = jacobian(safe_f, &p.data);
y_hat = value.to_f64_vec().into();
}
None => {
if i < max_iter - 1 && err_stack < 3 {
p = p_cand;
err_stack += 1;
} else {
p = valid_p;
break;
}
}
}
}
}
GaussNewton => unimplemented!(),
LevenbergMarquardt => {
let mut chi2 = ((&y - &y_hat).t() * (&y - &y_hat))[(0, 0)];
let mut nu = 2f64;
let lambda_0 = *self.hyperparams.get("lambda_init").unwrap_or(&1e-3);
let lambda_max = *self
.hyperparams
.get("lambda_max")
.unwrap_or(&f64::MAX.sqrt());
let mut lambda = lambda_0 * max(jtj.diag());
for i in 0..max_iter {
if lambda > lambda_max {
println!(
"Caution: At {}-th iter, lambda exceeds max value: {}",
i + 1,
lambda
);
break;
}
let h: Matrix;
let b_lu = (jtj.clone() + lambda * jtj.to_diag()).lu();
if b_lu.det() == 0f64 {
break;
}
let b = b_lu.inv();
h = b * j.t() * (&y - &y_hat);
let p_temp = &p + &h;
match unsafe_f(p_temp.data.to_ad_vec()) {
Some(value) => {
let j_temp = jacobian(safe_f, &p.data);
let y_hat_temp: Matrix = value.to_f64_vec().into();
let chi2_temp = ((&y - &y_hat_temp).t() * (&y - &y_hat_temp))[(0, 0)];
let rho = (chi2 - chi2_temp)
/ (h.t()
* (lambda * jtj.to_diag() * h.clone() + j.t() * (&y - &y_hat)))
[(0, 0)];
if rho > 0f64 {
p = p_temp;
valid_p = p.clone();
err_stack = 0;
j = j_temp;
jtj = &j.t() * &j;
y_hat = y_hat_temp;
chi2 = chi2_temp;
lambda *=
max(vec![1f64 / 3f64, 1f64 - (2f64 * rho - 1f64).powi(3)]);
nu = 2f64;
} else {
lambda *= nu;
nu *= 2f64;
}
}
None => {
if i < max_iter - 1 && err_stack < 3 {
p = p_temp;
err_stack += 1;
} else {
p = valid_p;
break;
}
}
}
}
}
}
let error_temp = &y - &y_hat;
self.error = ((error_temp.t() * error_temp)[(0, 0)] / y.row as f64).sqrt();
p.data
}
}