1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
//! # Ordinary Differential Equation (ODE) Solvers
//!
//! This module provides traits and structs for solving ordinary differential equations (ODEs).
//!
//! ## Overview
//!
//! - `ODEProblem`: Trait for defining an ODE problem.
//! - `ODEIntegrator`: Trait for ODE integrators.
//! - `ODESolver`: Trait for ODE solvers.
//! - `ODEError`: Enum for ODE errors.
//! - `ReachedMaxStepIter`: Reached maximum number of steps per step. (internal error)
//! - `ConstraintViolation(f64, Vec<f64>, Vec<f64>)`: Constraint violation. (user-defined error)
//! - ODE uses `anyhow` for error handling. So, you can customize your errors.
//!
//! ## Available integrators
//!
//! - **Explicit**
//! - Ralston's 3rd order (RALS3)
//! - Runge-Kutta 4th order (RK4)
//! - Ralston's 4th order (RALS4)
//! - Runge-Kutta 5th order (RK5)
//! - **Embedded**
//! - Bogacki-Shampine 2/3rd order (BS23)
//! - Runge-Kutta-Fehlberg 4/5th order (RKF45)
//! - Dormand-Prince 4/5th order (DP45)
//! - Tsitouras 4/5th order (TSIT45)
//! - **Implicit**
//! - Gauss-Legendre 4th order (GL4)
//!
//! ## Available solvers
//!
//! - `BasicODESolver`: A basic ODE solver using a specified integrator.
//!
//! You can implement your own ODE solver by implementing the `ODESolver` trait.
//!
//! ## Example
//!
//! ```rust
//! use peroxide::fuga::*;
//!
//! fn main() -> Result<(), Box<dyn Error>> {
//! // Same as : let rkf = RKF45::new(1e-4, 0.9, 1e-6, 1e-1, 100);
//! let rkf = RKF45 {
//! tol: 1e-6,
//! safety_factor: 0.9,
//! min_step_size: 1e-6,
//! max_step_size: 1e-1,
//! max_step_iter: 100,
//! };
//! let basic_ode_solver = BasicODESolver::new(rkf);
//! let initial_conditions = vec![1f64];
//! let (t_vec, y_vec) = basic_ode_solver.solve(
//! &Test,
//! (0f64, 10f64),
//! 0.01,
//! &initial_conditions,
//! )?;
//! let y_vec: Vec<f64> = y_vec.into_iter().flatten().collect();
//! println!("{}", y_vec.len());
//!
//! # #[cfg(feature = "plot")]
//! # {
//! let mut plt = Plot2D::new();
//! plt
//! .set_domain(t_vec)
//! .insert_image(y_vec)
//! .set_xlabel(r"$t$")
//! .set_ylabel(r"$y$")
//! .set_style(PlotStyle::Nature)
//! .tight_layout()
//! .set_dpi(600)
//! .set_path("example_data/rkf45_test.png")
//! .savefig()?;
//! # }
//! Ok(())
//! }
//!
//! // Extremely customizable struct
//! struct Test;
//!
//! impl ODEProblem for Test {
//! fn rhs(&self, t: f64, y: &[f64], dy: &mut [f64]) -> anyhow::Result<()> {
//! Ok(dy[0] = (5f64 * t.powi(2) - y[0]) / (t + y[0]).exp())
//! }
//! }
//! ```
use anyhow::{bail, Result};
/// Trait for defining an ODE problem.
///
/// Implement this trait to define your own ODE problem.
///
/// # Example
///
/// ```
/// use peroxide::fuga::*;
///
/// struct MyODEProblem;
///
/// impl ODEProblem for MyODEProblem {
/// fn rhs(&self, t: f64, y: &[f64], dy: &mut [f64]) -> anyhow::Result<()> {
/// dy[0] = -0.5 * y[0];
/// dy[1] = y[0] - y[1];
/// Ok(())
/// }
/// }
/// ```
pub trait ODEProblem {
fn rhs(&self, t: f64, y: &[f64], dy: &mut [f64]) -> Result<()>;
}
/// Trait for ODE integrators.
///
/// Implement this trait to define your own ODE integrator.
pub trait ODEIntegrator {
fn step<P: ODEProblem>(&self, problem: &P, t: f64, y: &mut [f64], dt: f64) -> Result<f64>;
}
/// Enum for ODE errors.
///
/// # Variants
///
/// - `ReachedMaxStepIter`: Reached maximum number of steps per step. (internal error for integrator)
/// - `ConstraintViolation`: Constraint violation. (user-defined error)
///
/// If you define constraints in your problem, you can use this error to report constraint violations.
///
/// # Example
///
/// ```no_run
/// use peroxide::fuga::*;
///
/// struct ConstrainedProblem {
/// y_constraint: f64
/// }
///
/// impl ODEProblem for ConstrainedProblem {
/// fn rhs(&self, t: f64, y: &[f64], dy: &mut [f64]) -> anyhow::Result<()> {
/// if y[0] < self.y_constraint {
/// anyhow::bail!(ODEError::ConstraintViolation(t, y.to_vec(), dy.to_vec()));
/// } else {
/// // some function
/// Ok(())
/// }
/// }
/// }
/// ```
#[derive(Debug, Clone)]
pub enum ODEError {
ConstraintViolation(f64, Vec<f64>, Vec<f64>), // t, y, dy
ReachedMaxStepIter,
}
impl std::fmt::Display for ODEError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
ODEError::ConstraintViolation(t, y, dy) => write!(
f,
"Constraint violation at t = {}, y = {:?}, dy = {:?}",
t, y, dy
),
ODEError::ReachedMaxStepIter => write!(f, "Reached maximum number of steps per step"),
}
}
}
/// Trait for ODE solvers.
///
/// Implement this trait to define your own ODE solver.
pub trait ODESolver {
fn solve<P: ODEProblem>(
&self,
problem: &P,
t_span: (f64, f64),
dt: f64,
initial_conditions: &[f64],
) -> Result<(Vec<f64>, Vec<Vec<f64>>)>;
}
/// A basic ODE solver using a specified integrator.
///
/// # Example
///
/// ```
/// use peroxide::fuga::*;
///
/// fn main() -> Result<(), Box<dyn Error>> {
/// let initial_conditions = vec![1f64];
/// let rkf = RKF45::new(1e-4, 0.9, 1e-6, 1e-1, 100);
/// let basic_ode_solver = BasicODESolver::new(rkf);
/// let (t_vec, y_vec) = basic_ode_solver.solve(
/// &Test,
/// (0f64, 10f64),
/// 0.01,
/// &initial_conditions,
/// )?;
/// let y_vec: Vec<f64> = y_vec.into_iter().flatten().collect();
///
/// Ok(())
/// }
///
/// struct Test;
///
/// impl ODEProblem for Test {
/// fn rhs(&self, t: f64, y: &[f64], dy: &mut [f64]) -> anyhow::Result<()> {
/// dy[0] = (5f64 * t.powi(2) - y[0]) / (t + y[0]).exp();
/// Ok(())
/// }
/// }
/// ```
pub struct BasicODESolver<I: ODEIntegrator> {
integrator: I,
}
impl<I: ODEIntegrator> BasicODESolver<I> {
pub fn new(integrator: I) -> Self {
Self { integrator }
}
}
impl<I: ODEIntegrator> ODESolver for BasicODESolver<I> {
fn solve<P: ODEProblem>(
&self,
problem: &P,
t_span: (f64, f64),
dt: f64,
initial_conditions: &[f64],
) -> Result<(Vec<f64>, Vec<Vec<f64>>)> {
let mut t = t_span.0;
let mut dt = dt;
let mut y = initial_conditions.to_vec();
let mut t_vec = vec![t];
let mut y_vec = vec![y.clone()];
while t < t_span.1 {
let dt_step = self.integrator.step(problem, t, &mut y, dt)?;
t += dt;
t_vec.push(t);
y_vec.push(y.clone());
dt = dt_step;
}
Ok((t_vec, y_vec))
}
}
// ┌─────────────────────────────────────────────────────────┐
// Butcher Tableau
// └─────────────────────────────────────────────────────────┘
/// Trait for Butcher tableau
///
/// ```text
/// C | A
/// - - -
/// | BU (Coefficient for update)
/// | BE (Coefficient for estimate error)
/// ```
///
/// # References
///
/// - J. R. Dormand and P. J. Prince, _A family of embedded Runge-Kutta formulae_, J. Comp. Appl. Math., 6(1), 19-26, 1980.
/// - Wikipedia: [List of Runge-Kutta methods](https://en.wikipedia.org/wiki/List_of_Runge%E2%80%93Kutta_methods)
pub trait ButcherTableau {
const C: &'static [f64];
const A: &'static [&'static [f64]];
const BU: &'static [f64];
const BE: &'static [f64];
fn tol(&self) -> f64 {
unimplemented!()
}
fn safety_factor(&self) -> f64 {
unimplemented!()
}
fn max_step_size(&self) -> f64 {
unimplemented!()
}
fn min_step_size(&self) -> f64 {
unimplemented!()
}
fn max_step_iter(&self) -> usize {
unimplemented!()
}
}
impl<BU: ButcherTableau> ODEIntegrator for BU {
fn step<P: ODEProblem>(&self, problem: &P, t: f64, y: &mut [f64], dt: f64) -> Result<f64> {
let n = y.len();
let mut iter_count = 0usize;
let mut dt = dt;
let n_k = Self::C.len();
loop {
let mut k_vec = vec![vec![0.0; n]; n_k];
let mut y_temp = y.to_vec();
for i in 0..n_k {
for i in 0..n {
let mut s = 0.0;
for j in 0..i {
s += Self::A[i][j] * k_vec[j][i];
}
y_temp[i] = y[i] + dt * s;
}
problem.rhs(t + dt * Self::C[i], &y_temp, &mut k_vec[i])?;
}
if !Self::BE.is_empty() {
let mut error = 0f64;
for i in 0..n {
let mut s = 0.0;
for j in 0..n_k {
s += (Self::BU[j] - Self::BE[j]) * k_vec[j][i];
}
error = error.max(dt * s.abs())
}
let factor = (self.tol() * dt / error).powf(0.2);
let new_dt = self.safety_factor() * dt * factor;
let new_dt = new_dt.clamp(self.min_step_size(), self.max_step_size());
if error < self.tol() {
for i in 0..n {
let mut s = 0.0;
for j in 0..n_k {
s += Self::BU[j] * k_vec[j][i];
}
y[i] += dt * s;
}
return Ok(new_dt);
} else {
iter_count += 1;
if iter_count >= self.max_step_iter() {
bail!(ODEError::ReachedMaxStepIter);
}
dt = new_dt;
}
} else {
for i in 0..n {
let mut s = 0.0;
for j in 0..n_k {
s += Self::BU[j] * k_vec[j][i];
}
y[i] += dt * s;
}
return Ok(dt);
}
}
}
}
// ┌─────────────────────────────────────────────────────────┐
// Runge-Kutta
// └─────────────────────────────────────────────────────────┘
/// Ralston's 3rd order integrator
///
/// This integrator uses the Ralston's 3rd order method to numerically integrate the ODE system.
/// In MATLAB, it is called `ode3`.
#[derive(Debug, Clone, Copy, Default)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct RALS3;
impl ButcherTableau for RALS3 {
const C: &'static [f64] = &[0.0, 0.5, 0.75];
const A: &'static [&'static [f64]] = &[&[], &[0.5], &[0.0, 0.75]];
const BU: &'static [f64] = &[2.0 / 9.0, 1.0 / 3.0, 4.0 / 9.0];
const BE: &'static [f64] = &[];
}
/// Runge-Kutta 4th order integrator.
///
/// This integrator uses the classical 4th order Runge-Kutta method to numerically integrate the ODE system.
/// It calculates four intermediate values (k1, k2, k3, k4) to estimate the next step solution.
#[derive(Debug, Clone, Copy, Default)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct RK4;
impl ButcherTableau for RK4 {
const C: &'static [f64] = &[0.0, 0.5, 0.5, 1.0];
const A: &'static [&'static [f64]] = &[&[], &[0.5], &[0.0, 0.5], &[0.0, 0.0, 1.0]];
const BU: &'static [f64] = &[1.0 / 6.0, 1.0 / 3.0, 1.0 / 3.0, 1.0 / 6.0];
const BE: &'static [f64] = &[];
}
/// Ralston's 4th order integrator.
///
/// This fourth order method is known as minimum truncation error RK4.
#[derive(Debug, Clone, Copy, Default)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct RALS4;
impl ButcherTableau for RALS4 {
const C: &'static [f64] = &[0.0, 0.4, 0.45573725, 1.0];
const A: &'static [&'static [f64]] = &[
&[],
&[0.4],
&[0.29697761, 0.158575964],
&[0.21810040, -3.050965616, 3.83286476],
];
const BU: &'static [f64] = &[0.17476028, -0.55148066, 1.20553560, 0.17118478];
const BE: &'static [f64] = &[];
}
/// Runge-Kutta 5th order integrator
///
/// This integrator uses the 5th order Runge-Kutta method to numerically integrate the ODE system.
#[derive(Debug, Clone, Copy, Default)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct RK5;
impl ButcherTableau for RK5 {
const C: &'static [f64] = &[0.0, 0.2, 0.3, 0.8, 8.0 / 9.0, 1.0, 1.0];
const A: &'static [&'static [f64]] = &[
&[],
&[0.2],
&[0.075, 0.225],
&[44.0 / 45.0, -56.0 / 15.0, 32.0 / 9.0],
&[
19372.0 / 6561.0,
-25360.0 / 2187.0,
64448.0 / 6561.0,
-212.0 / 729.0,
],
&[
9017.0 / 3168.0,
-355.0 / 33.0,
46732.0 / 5247.0,
49.0 / 176.0,
-5103.0 / 18656.0,
],
&[
35.0 / 384.0,
0.0,
500.0 / 1113.0,
125.0 / 192.0,
-2187.0 / 6784.0,
11.0 / 84.0,
],
];
const BU: &'static [f64] = &[
5179.0 / 57600.0,
0.0,
7571.0 / 16695.0,
393.0 / 640.0,
-92097.0 / 339200.0,
187.0 / 2100.0,
1.0 / 40.0,
];
const BE: &'static [f64] = &[];
}
// ┌─────────────────────────────────────────────────────────┐
// Embedded Runge-Kutta
// └─────────────────────────────────────────────────────────┘
/// Bogacki-Shampine 3(2) method
///
/// This method is known as `ode23` in MATLAB.
///
/// # Member variables
///
/// - `tol`: The tolerance for the estimated error.
/// - `safety_factor`: The safety factor for the step size adjustment.
/// - `min_step_size`: The minimum step size.
/// - `max_step_size`: The maximum step size.
/// - `max_step_iter`: The maximum number of iterations per step.
#[derive(Debug, Clone, Copy)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct BS23 {
pub tol: f64,
pub safety_factor: f64,
pub min_step_size: f64,
pub max_step_size: f64,
pub max_step_iter: usize,
}
impl Default for BS23 {
fn default() -> Self {
Self {
tol: 1e-3,
safety_factor: 0.9,
min_step_size: 1e-6,
max_step_size: 1e-1,
max_step_iter: 100,
}
}
}
impl BS23 {
pub fn new(
tol: f64,
safety_factor: f64,
min_step_size: f64,
max_step_size: f64,
max_step_iter: usize,
) -> Self {
Self {
tol,
safety_factor,
min_step_size,
max_step_size,
max_step_iter,
}
}
}
impl ButcherTableau for BS23 {
const C: &'static [f64] = &[0.0, 0.5, 0.75, 1.0];
const A: &'static [&'static [f64]] = &[
&[],
&[0.5],
&[0.0, 0.75],
&[2.0 / 9.0, 1.0 / 3.0, 4.0 / 9.0],
];
const BU: &'static [f64] = &[2.0 / 9.0, 1.0 / 3.0, 4.0 / 9.0, 0.0];
const BE: &'static [f64] = &[7.0 / 24.0, 0.25, 1.0 / 3.0, 0.125];
fn tol(&self) -> f64 {
self.tol
}
fn safety_factor(&self) -> f64 {
self.safety_factor
}
fn min_step_size(&self) -> f64 {
self.min_step_size
}
fn max_step_size(&self) -> f64 {
self.max_step_size
}
fn max_step_iter(&self) -> usize {
self.max_step_iter
}
}
/// Runge-Kutta-Fehlberg 4/5th order integrator.
///
/// This integrator uses the Runge-Kutta-Fehlberg method, which is an adaptive step size integrator.
/// It calculates six intermediate values (k1, k2, k3, k4, k5, k6) to estimate the next step solution and the error.
/// The step size is automatically adjusted based on the estimated error to maintain the desired tolerance.
///
/// # Member variables
///
/// - `tol`: The tolerance for the estimated error.
/// - `safety_factor`: The safety factor for the step size adjustment.
/// - `min_step_size`: The minimum step size.
/// - `max_step_size`: The maximum step size.
/// - `max_step_iter`: The maximum number of iterations per step.
#[derive(Debug, Clone, Copy)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct RKF45 {
pub tol: f64,
pub safety_factor: f64,
pub min_step_size: f64,
pub max_step_size: f64,
pub max_step_iter: usize,
}
impl Default for RKF45 {
fn default() -> Self {
Self {
tol: 1e-6,
safety_factor: 0.9,
min_step_size: 1e-6,
max_step_size: 1e-1,
max_step_iter: 100,
}
}
}
impl RKF45 {
pub fn new(
tol: f64,
safety_factor: f64,
min_step_size: f64,
max_step_size: f64,
max_step_iter: usize,
) -> Self {
Self {
tol,
safety_factor,
min_step_size,
max_step_size,
max_step_iter,
}
}
}
impl ButcherTableau for RKF45 {
const C: &'static [f64] = &[0.0, 1.0 / 4.0, 3.0 / 8.0, 12.0 / 13.0, 1.0, 1.0 / 2.0];
const A: &'static [&'static [f64]] = &[
&[],
&[0.25],
&[3.0 / 32.0, 9.0 / 32.0],
&[1932.0 / 2197.0, -7200.0 / 2197.0, 7296.0 / 2197.0],
&[439.0 / 216.0, -8.0, 3680.0 / 513.0, -845.0 / 4104.0],
&[
-8.0 / 27.0,
2.0,
-3544.0 / 2565.0,
1859.0 / 4104.0,
-11.0 / 40.0,
],
];
const BU: &'static [f64] = &[
16.0 / 135.0,
0.0,
6656.0 / 12825.0,
28561.0 / 56430.0,
-9.0 / 50.0,
2.0 / 55.0,
];
const BE: &'static [f64] = &[
25.0 / 216.0,
0.0,
1408.0 / 2565.0,
2197.0 / 4104.0,
-1.0 / 5.0,
0.0,
];
fn tol(&self) -> f64 {
self.tol
}
fn safety_factor(&self) -> f64 {
self.safety_factor
}
fn min_step_size(&self) -> f64 {
self.min_step_size
}
fn max_step_size(&self) -> f64 {
self.max_step_size
}
fn max_step_iter(&self) -> usize {
self.max_step_iter
}
}
/// Dormand-Prince 5(4) method
///
/// This is an adaptive step size integrator based on a 5th order Runge-Kutta method with
/// 4th order embedded error estimation.
///
/// # Member variables
///
/// - `tol`: The tolerance for the estimated error.
/// - `safety_factor`: The safety factor for the step size adjustment.
/// - `min_step_size`: The minimum step size.
/// - `max_step_size`: The maximum step size.
/// - `max_step_iter`: The maximum number of iterations per step.
#[derive(Debug, Clone, Copy)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct DP45 {
pub tol: f64,
pub safety_factor: f64,
pub min_step_size: f64,
pub max_step_size: f64,
pub max_step_iter: usize,
}
impl Default for DP45 {
fn default() -> Self {
Self {
tol: 1e-6,
safety_factor: 0.9,
min_step_size: 1e-6,
max_step_size: 1e-1,
max_step_iter: 100,
}
}
}
impl DP45 {
pub fn new(
tol: f64,
safety_factor: f64,
min_step_size: f64,
max_step_size: f64,
max_step_iter: usize,
) -> Self {
Self {
tol,
safety_factor,
min_step_size,
max_step_size,
max_step_iter,
}
}
}
impl ButcherTableau for DP45 {
const C: &'static [f64] = &[0.0, 0.2, 0.3, 0.8, 8.0 / 9.0, 1.0, 1.0];
const A: &'static [&'static [f64]] = &[
&[],
&[0.2],
&[0.075, 0.225],
&[44.0 / 45.0, -56.0 / 15.0, 32.0 / 9.0],
&[
19372.0 / 6561.0,
-25360.0 / 2187.0,
64448.0 / 6561.0,
-212.0 / 729.0,
],
&[
9017.0 / 3168.0,
-355.0 / 33.0,
46732.0 / 5247.0,
49.0 / 176.0,
-5103.0 / 18656.0,
],
&[
35.0 / 384.0,
0.0,
500.0 / 1113.0,
125.0 / 192.0,
-2187.0 / 6784.0,
11.0 / 84.0,
],
];
const BU: &'static [f64] = &[
35.0 / 384.0,
0.0,
500.0 / 1113.0,
125.0 / 192.0,
-2187.0 / 6784.0,
11.0 / 84.0,
0.0,
];
const BE: &'static [f64] = &[
5179.0 / 57600.0,
0.0,
7571.0 / 16695.0,
393.0 / 640.0,
-92097.0 / 339200.0,
187.0 / 2100.0,
1.0 / 40.0,
];
fn tol(&self) -> f64 {
self.tol
}
fn safety_factor(&self) -> f64 {
self.safety_factor
}
fn min_step_size(&self) -> f64 {
self.min_step_size
}
fn max_step_size(&self) -> f64 {
self.max_step_size
}
fn max_step_iter(&self) -> usize {
self.max_step_iter
}
}
/// Tsitouras 5(4) method
///
/// This is an adaptive step size integrator based on a 5th order Runge-Kutta method with
/// 4th order embedded error estimation, using the coefficients from Tsitouras (2011).
///
/// # Member variables
///
/// - `tol`: The tolerance for the estimated error.
/// - `safety_factor`: The safety factor for the step size adjustment.
/// - `min_step_size`: The minimum step size.
/// - `max_step_size`: The maximum step size.
/// - `max_step_iter`: The maximum number of iterations per step.
///
/// # References
///
/// - Ch. Tsitouras, Comput. Math. Appl. 62 (2011) 770-780.
#[derive(Debug, Clone, Copy)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct TSIT45 {
pub tol: f64,
pub safety_factor: f64,
pub min_step_size: f64,
pub max_step_size: f64,
pub max_step_iter: usize,
}
impl Default for TSIT45 {
fn default() -> Self {
Self {
tol: 1e-6,
safety_factor: 0.9,
min_step_size: 1e-6,
max_step_size: 1e-1,
max_step_iter: 100,
}
}
}
impl TSIT45 {
pub fn new(
tol: f64,
safety_factor: f64,
min_step_size: f64,
max_step_size: f64,
max_step_iter: usize,
) -> Self {
Self {
tol,
safety_factor,
min_step_size,
max_step_size,
max_step_iter,
}
}
}
impl ButcherTableau for TSIT45 {
const C: &'static [f64] = &[0.0, 0.161, 0.327, 0.9, 0.9800255409045097, 1.0, 1.0];
const A: &'static [&'static [f64]] = &[
&[],
&[Self::C[1]],
&[Self::C[2] - 0.335480655492357, 0.335480655492357],
&[
Self::C[3] - (-6.359448489975075 + 4.362295432869581),
-6.359448489975075,
4.362295432869581,
],
&[
Self::C[4] - (-11.74888356406283 + 7.495539342889836 - 0.09249506636175525),
-11.74888356406283,
7.495539342889836,
-0.09249506636175525,
],
&[
Self::C[5]
- (-12.92096931784711 + 8.159367898576159
- 0.0715849732814010
- 0.02826905039406838),
-12.92096931784711,
8.159367898576159,
-0.0715849732814010,
-0.02826905039406838,
],
&[
Self::BU[0],
Self::BU[1],
Self::BU[2],
Self::BU[3],
Self::BU[4],
Self::BU[5],
],
];
const BU: &'static [f64] = &[
0.09646076681806523,
0.01,
0.4798896504144996,
1.379008574103742,
-3.290069515436081,
2.324710524099774,
0.0,
];
const BE: &'static [f64] = &[
0.001780011052226,
0.000816434459657,
-0.007880878010262,
0.144711007173263,
-0.582357165452555,
0.458082105929187,
1.0 / 66.0,
];
fn tol(&self) -> f64 {
self.tol
}
fn safety_factor(&self) -> f64 {
self.safety_factor
}
fn min_step_size(&self) -> f64 {
self.min_step_size
}
fn max_step_size(&self) -> f64 {
self.max_step_size
}
fn max_step_iter(&self) -> usize {
self.max_step_iter
}
}
// ┌─────────────────────────────────────────────────────────┐
// Gauss-Legendre 4th order
// └─────────────────────────────────────────────────────────┘
/// Enum for implicit solvers.
///
/// This enum defines the available implicit solvers for the Gauss-Legendre 4th order integrator.
/// Currently, only the fixed-point iteration method is implemented.
#[derive(Debug, Clone, Copy)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub enum ImplicitSolver {
FixedPoint,
//Broyden,
//TrustRegion(f64, f64),
}
/// Gauss-Legendre 4th order integrator.
///
/// This integrator uses the 4th order Gauss-Legendre Runge-Kutta method, which is an implicit integrator.
/// It requires solving a system of nonlinear equations at each step, which is done using the specified implicit solver (e.g., fixed-point iteration).
/// The Gauss-Legendre method has better stability properties compared to explicit methods, especially for stiff ODEs.
///
/// # Member variables
///
/// - `solver`: The implicit solver to use.
/// - `tol`: The tolerance for the implicit solver.
/// - `max_step_iter`: The maximum number of iterations for the implicit solver per step.
#[derive(Debug, Clone, Copy)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct GL4 {
pub solver: ImplicitSolver,
pub tol: f64,
pub max_step_iter: usize,
}
impl Default for GL4 {
fn default() -> Self {
GL4 {
solver: ImplicitSolver::FixedPoint,
tol: 1e-6,
max_step_iter: 100,
}
}
}
impl GL4 {
pub fn new(solver: ImplicitSolver, tol: f64, max_step_iter: usize) -> Self {
GL4 {
solver,
tol,
max_step_iter,
}
}
}
impl ODEIntegrator for GL4 {
#[inline]
fn step<P: ODEProblem>(&self, problem: &P, t: f64, y: &mut [f64], dt: f64) -> Result<f64> {
let n = y.len();
let sqrt3 = 3.0_f64.sqrt();
let c = 0.5 * (3.0 - sqrt3) / 6.0;
let d = 0.5 * (3.0 + sqrt3) / 6.0;
let mut k1 = vec![0.0; n];
let mut k2 = vec![0.0; n];
let mut y1 = vec![0.0; n];
let mut y2 = vec![0.0; n];
match self.solver {
ImplicitSolver::FixedPoint => {
// Fixed-point iteration
for _ in 0..self.max_step_iter {
for i in 0..n {
y1[i] = y[i] + dt * (c * k1[i] + d * k2[i] - sqrt3 * (k2[i] - k1[i]) / 2.0);
y2[i] = y[i] + dt * (c * k1[i] + d * k2[i] + sqrt3 * (k2[i] - k1[i]) / 2.0);
}
problem.rhs(t + c * dt, &y1, &mut k1)?;
problem.rhs(t + d * dt, &y2, &mut k2)?;
let mut max_diff = 0f64;
for i in 0..n {
max_diff = max_diff
.max(
(y1[i]
- y[i]
- dt * (c * k1[i] + d * k2[i] - sqrt3 * (k2[i] - k1[i]) / 2.0))
.abs(),
)
.max(
(y2[i]
- y[i]
- dt * (c * k1[i] + d * k2[i] + sqrt3 * (k2[i] - k1[i]) / 2.0))
.abs(),
);
}
if max_diff < self.tol {
break;
}
}
}
}
for i in 0..n {
y[i] += dt * 0.5 * (k1[i] + k2[i]);
}
Ok(dt)
}
}