1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
//! To find Eigenvalue & Eigenvector
//!
//! * Reference : Press, William H., and William T. Vetterling. *Numerical Recipes.* Cambridge: Cambridge Univ. Press, 2007.
pub use self::EigenMethod::*;
use crate::structure::matrix::Matrix;
use crate::traits::matrix::MatrixTrait;
use crate::util::non_macro::eye_shape;
#[derive(Debug, Copy, Clone)]
pub enum EigenMethod {
Jacobi,
}
#[derive(Debug, Clone)]
pub struct Eigen {
pub eigenvalue: Vec<f64>,
pub eigenvector: Matrix,
}
impl Eigen {
pub fn extract(self) -> (Vec<f64>, Matrix) {
(self.eigenvalue, self.eigenvector)
}
}
pub fn eigen(m: &Matrix, em: EigenMethod) -> Eigen {
match em {
Jacobi => {
let mat = m.clone();
let mut j = jacobi(mat);
j.iter();
j.extract()
}
}
}
// =============================================================================
// Jacobi Method
// =============================================================================
/// To do Jacobi method
///
/// * Reference : Press, William H., and William T. Vetterling. *Numerical Recipes.* Cambridge: Cambridge Univ. Press, 2007.
#[derive(Debug)]
pub struct JacobiTemp {
pub n: usize,
pub a: Matrix,
pub v: Matrix,
pub d: Vec<f64>,
pub n_rot: usize,
}
pub fn jacobi(m: Matrix) -> JacobiTemp {
let n = m.row;
let v = eye_shape(n, m.shape);
let d = m.diag();
let a = m;
JacobiTemp {
n,
a,
v,
d,
n_rot: 0,
}
}
impl JacobiTemp {
pub fn new(m: Matrix) -> Self {
jacobi(m)
}
pub fn extract(self) -> Eigen {
let v = self.v;
let d = self.d;
Eigen {
eigenvalue: d,
eigenvector: v,
}
}
/// Main Jacobi traits
///
/// * Reference : Press, William H., and William T. Vetterling. *Numerical Recipes.* Cambridge: Cambridge Univ. Press, 2007.
pub fn iter(&mut self) {
let a = &mut self.a;
let n = self.n;
let v = &mut self.v;
let mut b = a.diag();
let d = &mut self.d;
let mut z = vec![0f64; n];
let mut h: f64;
let mut _n_rot = self.n_rot;
for i in 1..51 {
let mut sm = 0f64;
for ip in 0..n - 1 {
for iq in ip + 1..n {
sm += a[(ip, iq)].abs();
}
}
if sm == 0f64 {
eigsrt(d, v);
return ();
}
let tresh = if i < 4 {
0.2 * sm / (n.pow(2) as f64)
} else {
0f64
};
for ip in 0..n - 1 {
for iq in ip + 1..n {
let g = 100f64 * a[(ip, iq)].abs();
if i > 4 && g <= f64::EPSILON * d[ip].abs() && g <= f64::EPSILON * d[iq].abs() {
a[(ip, iq)] = 0f64;
} else if a[(ip, iq)].abs() > tresh {
h = d[iq] - d[ip];
let t = if g <= f64::EPSILON * h.abs() {
a[(ip, iq)] / h
} else {
let theta = 0.5 * h / a[(ip, iq)];
let mut temp = 1f64 / (theta.abs() + (1f64 + theta.powi(2)).sqrt());
if theta < 0f64 {
temp = -temp;
}
temp
};
let c = 1f64 / (1f64 + t.powi(2)).sqrt();
let s = t * c;
let tau = s / (1f64 + c);
h = t * a[(ip, iq)];
z[ip] -= h;
z[iq] += h;
d[ip] -= h;
d[iq] += h;
a[(ip, iq)] = 0f64;
for j in 0..ip {
rot(a, s, tau, j, ip, j, iq);
}
for j in ip + 1..iq {
rot(a, s, tau, ip, j, j, iq);
}
for j in iq + 1..n {
rot(a, s, tau, ip, j, iq, j);
}
for j in 0..n {
rot(v, s, tau, j, ip, j, iq);
}
_n_rot += 1;
}
}
}
for ip in 0..n {
b[ip] += z[ip];
d[ip] = b[ip];
z[ip] = 0f64;
}
}
assert!(false, "Too many iterations in routine jacobi");
}
}
fn rot(a: &mut Matrix, s: f64, tau: f64, i: usize, j: usize, k: usize, l: usize) {
let g = a[(i, j)];
let h = a[(k, l)];
a[(i, j)] = g - s * (h + g * tau);
a[(k, l)] = h + s * (g - h * tau);
}
/// Given eigenvalue & eigenvector, sorts thod eigenvalues into descending order
///
/// * Reference : Press, William H., and William T. Vetterling. *Numerical Recipes.* Cambridge: Cambridge Univ. Press, 2007.
fn eigsrt(d: &mut Vec<f64>, v: &mut Matrix) {
let mut k: usize;
let n = d.len();
for i in 0..n - 1 {
k = i;
let mut p = d[k];
for j in i..n {
if d[j] >= p {
k = j;
p = d[k];
}
}
if k != i {
d[k] = d[i];
d[i] = p;
for j in 0..n {
p = v[(j, i)];
v[(j, i)] = v[(j, k)];
v[(j, k)] = p;
}
}
}
}